BIOMIMETIC FORMATION OF A NIMBIN CLASS LIMONOID

Mohamed S. Rajab, Michael D. Bentley,* and Raymond C. Fort, Jr.
Department of Chemistry, University of Maine, Orono, Maine 04469

Salannin [1], previously isolated from the genera Melia and Azadirachta, belongs to a large and important group of frequently biologically active tetranortriterpenes of high structural complexity $(1,2)$; however, little attention has been devoted to its biogenesis. During studies on the structure of the limonoid insect antifeedant volkensin [2] (3), a constituent of Melia volkensii, we discovered that treatment of a CHCl_{3} solution of 2 with a 2.5% solution of trifluoroacetic acid in CHCl_{3} induced a facile rearrangement to the hitherto unknown compound 3 in 85% yield within 30 min at room temperature. Mild oxidation of 3 with chromic acid in aqueous pyridine gave the corresponding acid 4. Methylation of 4 with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Me}_{2} \mathrm{CO}$ yielded salannin [1], which was identified by comparison with an authentic sample (4).

A mechanism for the rearrangement that accounts for product stereochemistry at $\mathrm{C}-7$ and $\mathrm{C}-15$ would involve acid catalyzed C -ring opening of $\mathbf{2}$ to the 12aldehyde 5 followed by rotation about the $8-14$ bond and nucleophilic displacement by the $7 \alpha-\mathrm{OH}$ on the protonated $15-\mathrm{OH}$. Molecular mechanics calculations (5) were employed to investigate the driving force for the $\mathbf{2}$ to 3 rearrangement. Program limitations on the number of input atoms required that an OH rather than an OAc be used at $\mathrm{C}-3$ in the calculations; model calculations showed that this omission had no effect on the results. Direct comparison of the enthalpies of 2 and 3 is not feasible because these compounds contain different numbers of atoms as a molecule of $\mathrm{H}_{2} \mathrm{O}$ is lost in the rearrangement. However, if one simply opens lactol 2 to the aldehyde/alcohol 5 and permits free rota-
tion about the $\mathrm{C}-8$ to $\mathrm{C}-14$ bond, the resulting structure is comparable in stability to 2 . $\Delta \mathrm{H}_{\mathrm{f}}$ for the $12-\alpha$ and $12-\beta$ epimers of 2 are -287.3 and -289.8 $\mathrm{kcal} / \mathrm{mole}$, respectively, while that of 5 is $288.7 \mathrm{kcal} /$ mole. Furthermore, 5 adopts a conformation in which ring D lies at about a 30 degree angle to the plane of rings $A-C$, with $C-15$ just below the OH on $\mathrm{C}-7$ and $3.1 \AA$ away, an ideal situation for ring closure to 3 .

Taylor (2) has recently proposed a similar rearrangement as a key step in the biosynthesis of nimbin derivatives, but such a transformation has not until now been observed. According to the Taylor biosynthesis, 2 would arise by cleavage of the $12-13$ bond of $\mathbf{6}$ and simultaneous opening of the epoxide to generate $12-\mathrm{CHO}$ and $15-\mathrm{OH}$ functions, with rotation about the $8-14$ bond and recyclization leading to the lactol 2. Rearrangement of $\mathbf{2}$ would then lead to $\mathbf{3}$. Our observation of the latter rearrangement, together with isolation of $\mathbf{1}$ and $\mathbf{2}$ as major limonoids of the fruit of M. volkensii (3), lends support to Taylor's proposal. It is also possible, however, that oxidation at $\mathrm{C}-12$ takes place before or concomitantly with rotation about the 8-14 bond and ring closure. We have, for example, observed such a rearrangement to the known nimbidic acid [7] (5) during acidic workup following base-induced cleavage of the C-ring lactone 8. An alternate pathway to salannin from 9, which involves cleavage of the 12-13 bond of 9 to form a 12 -acylium ion followed by attack of the $7-\mathrm{OH}$ on the 15 position, has been proposed by Mitra et al. (6), and a version of this pathway was recently included in a review by Siddiqui et al. (7). We feel that this proposal is not

$2 \mathrm{X}=\mathrm{OH}$
$8 \mathrm{X}=\mathrm{O}$

$\mathrm{R}=\mathrm{CHO}, \mathrm{R}_{1}=$ tiglate, $\mathrm{R}_{2}=\mathrm{Ac}$
$\mathrm{R}=\mathrm{COOH}, \mathrm{R}_{1}=$ tiglate, $\mathrm{R}_{2}=\mathrm{Ac}$
$\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}_{1}=$ tiglate, $\mathrm{R}_{2}=\mathrm{Ac}$ $\mathrm{R}=\mathrm{COOH}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H}$

9

6
mechanistically sound and, as presented, does not meet requirements for electronic bookkeeping.

EXPERIMENTAL

General experimental procedures.Melting points were determined on a Fisher hotstage apparatus and are uncorrected. Ir spectra were recorded on a Perkin-Elmer 283 spectrometer. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-nmr spectra were obtained on a Varian XL-200 system operating at 200 MHz for ${ }^{1} \mathrm{H}$ and 50.3 MHz for ${ }^{13} \mathrm{C}$. ${ }^{13} \mathrm{C}$ multipicities were assigned using the APT technique. Low resolution mass spectra were recorded on an HP-5985 mass spectrometer operating at 70 ev ; high resolution mass spectra were obtained on a VG-70E system at the Auburn University Mass Spectromerry Facility by Dr. George Goodloe.

MOLECULAR MECHANICS.-Molecular mechanics calculations were performed with the

Serena Software (POB 3076, Bloomington, IN 47402) version of MM2, QCPE No. 395.

Rearrangement of volkensin.-Volkensin [2] (200 mg) was dissolved in CHCl_{3} (10 ml), and trifluoroacetic acid (5 drops, to make a ca. 2.5% solution) was added. The mixture was stirred at room temperature and the reaction monitored by Si gel tlc using $\mathrm{Me}_{2} \mathrm{CO}$-hexane (4:6). The reaction was essentially complete after 30 min, and the product mixture was immediately washed several times with 5% NaHCO_{3} and finally with $\mathrm{H}_{2} \mathrm{O}$. The CHCl_{3} was then dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and decolorized with charcoal. The solvent was removed under reduced pressure and the resulting brown solid purified by cc using Si gel ($70-230$ mesh) eluted with $\mathrm{Me}_{2} \mathrm{CO}$-hexane (1:3) to give 3 as white needles (120 mg), mp 205-206 (from $\mathrm{Me}_{2} \mathrm{CO} /$ hexane). Hrms yielded a parent ion at m / e 566.2903 , corresponding to $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{O}_{8}$. The ir
spectrum (KBr) displayed absorptions at 3135 , 2950, 1740, 1710, 1655, 1500, 1260, 1150, 1050,870 , and $810 \mathrm{~cm}^{-1} \cdot{ }^{1} \mathrm{H} \mathrm{nmr}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 9.15(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}, \mathrm{H}-12)$, $7.34(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-23), 7.14(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-21), 6.99$ ($1 \mathrm{H}, \mathrm{qq}, J=7,1.4, \mathrm{H}-3^{\prime}$ of tiglate), $6.12(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-22$), $5.30(1 \mathrm{H}, \mathrm{dd}, J=6,10, \mathrm{H}-15), 4.99$ $(1 \mathrm{H}, \mathrm{t}, J=3, \mathrm{H}-1), 4.86(1 \mathrm{H}, \mathrm{t}, J=3, \mathrm{H}-3)$, $4.20(1 \mathrm{H}, \mathrm{d}, J=3.2, \mathrm{H}-7), 4.00(1 \mathrm{H}, \mathrm{dd}$, $J=3.2,12.4, \mathrm{H}-6), 3.73-3.58(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-28$, H-17), 2.78 ($1 \mathrm{H}, \mathrm{d}, 12.4, \mathrm{H}-5$), $2.66(1 \mathrm{H}, \mathrm{dd}$, $J=2.7,10.5, \mathrm{H}-9), 2.10-2.43(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$, $\mathrm{H}-11, \mathrm{H}-16), 1.96$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$), 1.88 ($3 \mathrm{H}, \mathrm{dq}$, $J=1,4,1, \mathrm{H}-5^{\prime}$ of tiglate), $1.80(3 \mathrm{H}, \mathrm{dq}$, $J=7,1, \mathrm{H}-4^{\prime}$ of tiglate), $1.60(3 \mathrm{H}$, br s, $\mathrm{H}-18)$, 1.28 (3H, s, H-30), 1.23 (3H, s, H-29), 0.99 $(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-19) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 199.2(\mathrm{C}-12)$, 170.2 (carbonyl of acetate), 166.3 (carbonyl of tiglate), 145.1 (C-14), 142.7 (C-23), 137.6 (C21 and $\mathrm{C}-3^{\prime}$), $135.9(\mathrm{C}-13), 128.2\left(\mathrm{C}-2^{\prime}\right), 126.2$ (C-20), 109.4 (C-22), 87.4 (C-15), 85.1 (C-7), 77.2 (C-28), 72.1 (C-1), 70.9 (C-3 and $\mathrm{C}-6$), 49.0 (C-17), 48.1 (C-8), 42.2 (C-4), 41.3 (C16), 40.0 (C-10), 39.5 (C-5 and C-11), 37.6 (C9), 27.5 (C-2), 20.4 (acetal methyl), 19.0 (C29), 16.3 (C-19), 14.9 (C-18), 13.9 (C-5'), 13.0 (C-30), 11.5 (C-4'). Primed numbers refer to the tiglate group.

Oxidation of 3.-Compound 3 (100 mg) was dissolved in pyridine (5 ml) containing $\mathrm{H}_{2} \mathrm{O}$ (2 drops), and an excess of chromic acid was added. The mixture was stirred at room temperature for 5 days. The pyridine was then evaporated using N_{2} and the resulting brown solid purified by preparative tlc ($25 \% \mathrm{Me}_{2} \mathrm{CO} / \mathrm{CHCl}_{3}$). The compound isolated was recrystallized from $\mathrm{Me}_{2} \mathrm{CO}$ /hexane to give 4 as white needles, 40 mg , mp $258-260^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO} /$ hexane). Low resolution ms yielded a parent ion at $m / e 582$. The ir spectrum (KBr) displayed absorptions at 3000 $\mathrm{cm}^{-1} \mathrm{br}(3400-2500), 1715,1730,1655$, $1260,1045,940,870,805 .{ }^{1} \mathrm{H} \mathrm{nmr}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.31(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-23), 7.19(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-21), 6.97\left(1 \mathrm{H}, \mathrm{qq}, J=7,1.4, \mathrm{H}-3^{\prime}\right.$ of tiglate), $6.18(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-22), 5.41(1 \mathrm{H}, \mathrm{dd}$, $J=6,10, \mathrm{H}-15), 4.97(1 \mathrm{H}, \mathrm{t}, J=3, \mathrm{H}-1), 4.84$ $(1 \mathrm{H}, \mathrm{t}, J=3, \mathrm{H}-3), 4.19(1 \mathrm{H}, \mathrm{d}, J=3,2, \mathrm{H}-7)$, $4.00(1 \mathrm{H}, \mathrm{dd}, J=3.2,12.4, \mathrm{H}-6), 3.70-3.56$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-28, \mathrm{H}-17), 2.80(1 \mathrm{H}, \mathrm{d}, J=12.4$, H-5), $2.71(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 2.30-2.10(6 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-2, \mathrm{H}-11, \mathrm{H}-16$), 1.93 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$), 1.88 $\left(3 \mathrm{H}, \mathrm{dq}, J=1.4,1 \mathrm{H}-\mathrm{s}^{\prime}\right.$ of tiglate), $1.78(3 \mathrm{H}$, $\mathrm{dq}, J=7,1, \mathrm{H}-4^{\prime}$ of tiglate), $1.68(3 \mathrm{H}, \mathrm{brs}, \mathrm{H}-$ 18), 1.31 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-30$), 1.23 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-29$), $1.01(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-19)$.

Methylation of 4 - Compound $\mathbf{4}$ (50 mg) was dissolved in $\mathrm{Me}_{2} \mathrm{CO}(2.5 \mathrm{ml})$, and the solution was cooled to 0°. An excess of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was
added, and the reaction mixture was stirred at room temperature for 15 min . Si gel tlc analysis using $\mathrm{Me}_{2} \mathrm{CO}-\mathrm{CHCl}_{3}$ (3:7) indicated absence of the starting material, and a new spot corresponding to satannin appeared. The solvent was then evaporated under vacuum, and the resulting white solid was shown by identity with published values $(4,8)$ of the ${ }^{1} \mathrm{H}$-nmr spectra, mass spectrum, ir spectrum, and melting point to be salan$\operatorname{nin}\{1\}$.

Rearrangement of 8 to nimbidic acid [7]. -Compound $\mathbf{8}(100 \mathrm{mg})$ was dissolved in $5 \% \mathrm{MeOH} / \mathrm{KOH}(4 \mathrm{ml})$ and stirred for 3 h . The reaction mixture was then acidified with cold 6 N HCl until a white precipitate persisted. The acidified solution was then extracted several times with CHCl_{3}, and the combined CHCl_{3} extracts were evaporated under reduced pressure to give a thick yellow oil. The crude product was then purified by preparative Si gel thc using $\mathrm{Me}_{2} \mathrm{CO}$ hexane ($1: 1$) containing 0.5 ml HOAc . The resulting white solid (30 mg) was shown by identity with published values (5) of the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectra, mass spectrum, ir spectrum, and melting point to be nimbidic acid [7].

ACKNOWLEDGMENTS

We are indebted to Mr. L.N. Lester for assistance in obtaining nmr spectra and to the USDA for financial support through grants 85-FSTY0102 and 86-CSRS-2-2759.

LITERATURE CITED

1. J.D. Connolly, in: "Chemistry and Chemical Taxonomy of the Rutales." Ed. by P.G. Waterman and M.F. Grundon, Academic Press, London, 1983, p. 175.
2. D.A.H. Taylor, in: "Fortschritte der Chemie Organisher Naturstoffe." Ed. by W. Herz, H. Griseback, and G.W. Kirby, Springer-Verlag, Vienna, Vol. 45, p. 1, (1984).
3. M.S. Rajab, M.D. Bentley, A.R. Alford, and M.J. Mendel, J. Nat. Prod., 51, 168 (1988).
4. R. Henderson, R. McCrindle, A. Melera, and K.H. Overton, Tetrabedron, 24, 1525 (1968).
5. C.R. Mitra, H.S. Garg, and G.N. Pandey, Pbytachemistry, 10, 857 (1971).
6. C.R. Mitra, H.S. Garg, and G.N. Pandy, Tetrabedron Lett., 2761 (1970).
7. S. Siddiqui, B.S. Siddiqui, S. Faizi, and T. Mahmood, J. Nat. Prod., 51, 30 (1988).
8. W. Kraus and M. Bokel, Chem. Ber., 114, 267 (1981).

Received 16June 1988

